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ABSTRACT

This paper is concerned about the mathematical aspects of the two model

equations which describe nonlinear wave motions in a rotating fluid. We

establish the local existence of solutions and show that singularities occur

in a finite time under certain hypotheses. We also show that these equations

admit nonconstant travelling wave solutions.
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SIGNIFICANCZ AND ZXPLANATXON

We study the model equations which describe axially symmetric long wave

notions arising in a rotating fluidi see (0-1), (0-2) in the Introduction. We

discuss qualitative behavior of these model equations and compare them with

the K-dV equation and Burgers' equation (without dissipation). The dispersion

mechanism of our model equation is weaker than that of the K-dV equation (see

BNK [2])y we show that the local solution (in a reasonably smooth function

space) cannot be extended to a global solution in general, which is in con-

trast to the case of the K-dV equation. Nevertheless, the dispersion

mechanism of our equations is able to sustain nonconstant travelling waves,

which is impossible in the case of Burgers' equation (without dissipation).

We discuss the equations in more general forms and derive the properties of

our model equations from the general results.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.



ON THE MODEL EQUATIONS WHICH DESCRIBE NONLINEAR

WAVE NOTIONS IN A ROTATING FLUID

Jong Uhn Kim

0. Introduction

The purpose of this paper is to report some results on qualitative

properties of the two model equations which arise in the theory of long waves

in a rotating fluid:

(0-1) ut +u +uu x + __ - 0,

(0-2) ut + su + uu - A 2_ 2_ .x t ax 2  &.. u,) d 0

Equation (0-1) was derived by Leibovich (9]. This equation describes axially

symmetric long wave motions of mall amplitude in inviscid, incompressible,

rotating fluids which are radially infinite. Here A * 0, B > 0 and a are

real constants, t is the time variable and x is the axial coordinate.

When r denotes the radial coordinate, the wave disturbance stream function

#(r,x,t) is assumed to be of the form #(rx,t) - E#(r)u(x,t) and u(x,t)

satisfies (0-1); for details, see [9). Equation (0-2) is obtained from (0-1)

by exploiting the zero-order equivalence of L and - - (

It is interesting to compare Equation (0-1) with Burgers' equation

(without dissipation) and with the K-dV equation:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062, Mod. 2.
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(0-3) ut +au x + uu -o

(0-4) ut + ux + uux xxx 0.

Equation (0-3) is obtained from (0-1) by deleting the dispersion term and

Equation (0-4) has a dispersion term which is stronger than that of (0-1)1 see

BUM 12). Now we consider some basic mathematical questions associated with an

evolution equation:

(QI) Does there exist a unique local solution of the initial value problem in

a reasonably smooth function space?

(Q2) Can this local solution be defined globally in time in the same function

space?

(Q3) Does the equation admit a nonconstant continuous travelling wave solution?

The main results of the present paper are the answers to these questions;

see Theorem 1.1, Theorem 2.1, Theorem 3.4 and Theorem 3.6. Actually we

discuss more general equations which include (0-1) and (0-2). The qualitative

theory for Equation (0-4) has been developed by many authors and the results

are well-known. With regard to the above questions, we compare the equations

as follows:

(0-1), (0-2) (0-3) (0-4)

(QI) Yes Yes Yes

(Q2) No No Yes

(Q3) Yes No Yes

This summary will be explained in details in the subsequent sections.
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Notations. The standard notations 3ts a f t f are used for

at* axJ af ax  respectively. For a given function g, its Fourier
at' TX' Ft- TX'

transform is denoted by g and we employ the standard definition:

Hs, a ) 0, stands for the set of all real-valued functions g in L2(R)

such that (1+i2) Ig([)12d[ ( and the norm 1I1 is taken to be

Ig 2 f 2s9 2 1ags - J"(1+Il ) Ig(C)t dE. H (o,p) denotes the set of all real-valued

2 2functions in L (o,p) whose first order derivative is also in L (o,p). The

elements of C0 (R) are continuous functions in R which vanish at infinity.

-3-



1. local Existence of Solutions

Under some physical hypotheses, the general model equations for long

waves are given by either

(1-1) Ut + U x + UUx + xU - 0

or

(1-2) ut + au x+ uu t+ tP2u 0'

where P1 and P2 are pseudo-differential operators. In the derivation of

such equations, the operators Pi, i1,2, are usually determined from the

dispersion relation in terms of their symbols Pi(E), i-1,2 (see [1], [21,

[9)). Hence, we assume that the symbols P(9), 1-1,2, are given in advance

to define the operators P, i-1,2. For (0-1), (0-2), the corresponding

operators are given by

(1-3) -P1()- () - 2 ( C)

where K0(*) is the modified Bessel function of the second kind of order

zero. In this section, we establish the local existence of solutions to

(1-1), (1-2) in the case where the symbols Pi(m), i-1,2, satisfy the

following conditions:

(1-4) P (F), i-1,2, are even, real-valued functions,

(1-5) e i L -, 2;

(1-6) for some -1< 8 < M < P2(E) 4 M holds for almost all

-e R.

-4- S



II!-

Since K0(I I) behaves like -logICI for mall C and like e

for large C, it is easy to see that (1-4), (1-5) are satisfied by (1-3), and

-1
that (1-6) is satisfied when A > / - . Now we state the2 2x x~lI

O6R
local existence theoremt

Theorem 1.1. Suppose the conditions (1-4) to (1-6) hold. Let

s > 3/2 and u0 (x) e H. Then, there is a positive number T depending on

lu I such that (1-1), (1-2) have unique solutions in

C([O,T); H) n CI([O,T)iHR 1 ) satisfying u(x,O) - u0 (x).

3
(proof) Let 0 > - be given. By virtue of (1-4) and (1-5), it is obvious

2

that f 3 xP 1f  is a continuous mapping from R into itself satisfying:

(1-7) ox P Ifl g I;1 (1)1 Ifi He, for all f e H5e

A

(1-8) If3x x P I glL2 • IEPI(M)I7 If-glL2' for all f, g e R

Following the notations in Kato (6], we take X - L2 , Y - He. Then, by means

of (1-7), (1-8), we find that Mquation (1-1) is a special version of Ixample

8.1 in (6]; and so, we can employ Kato's result directly to obtain a unique

solution in C([OT)i He) ( CI(1 0,T); H') for some T > 0. Next we rewrite

Equation (1-2) in the form:

(1-9) Ut +au +uU + P3 (u+uux)i=O

where P3(g) - -P2(C)/1+P2(C). By taking account of the hypotheses on

P(2M), it can be easily shown that if u 6 C([OT) H )n C ((0,)T; H)e

3
a > then (1-2) and (1-9) are equivalent, that is, a solution of (1-9) in

the above function space is also a solution of (1-2) and vice versa. The

-5- II I II Ii, . ..



conditions (1-4) to (1-6) imply that &13(c) e L and f + P3fx is a

continuous mapping from He into itself. The mapping (f,g) + fg is a

continuous bilinear mapping from H* x H* into H', provided a !, and

hence# it follows that for all f e H6 ,

(1-10) f3 (af x + ffx) ( KUlP 3 (f)i (fl + INl 2 )

I3fx +fx1 go L H5"I17 1 H

asid for all fg e Hs ,

(1-3) UP (nfx+ffx) - P3 (fgx+ggx)I L2  3 f-gE1? 2  L 2

2 s
where N > 0 depends only on a. By taking X - L2, Y - Hs , and using

(1-10), (1-11), it is easily seen that (1-9) is also a special version of

Ixample 8.1 in [6] and the local existence of solutions to (1-9) follows

immediately.

-6-



2. Formation of Singularities

Since local solutions have been obtained in C([0,T)i NO), 5 > , we

shall examine the possibility of extending a local solution to a global

solution. It turns out that singularities develop in local solutions under

the additional assumptions and thus, a local solution cannot be extended

globally in time in general. In the present section, we assume not only (1-4)

to (1-6), but also the following conditions:

(2-1) C 2p 1) e L 2

2- 1 2(2-2) 2P21 ) e L n L
2

Obviously, (2-1), (2-2) are satisfied by (1-3). The main result of this

section is:

Theorem 2.1 Under the above assumptions, the local solutions of (1-1), (1-2)

in C([0,T), H8 ), s > cannot be extended globally in time in the same
25

function space if the initial function u 0(x) e Hs  satisfies:

(2-3) - I 1' for Equation (1-1);

2

(2-4) 2- < 2 , for Equation (1-2),

where A l U01L2 > 0, M - -min u0x and K I (reap. K2 ) is a positive

L xeR
constant depending only on P1 (resp. P2) . As a consequence, we have the

following

Theorem 2.2 Let s, < 3 be given. Then, for any e > 0, there are initial
s1

data u 0x) in H such that lu01 a < £ and no global solution

H-

...- 7-



satisfying the initial condition u(x,0) - u 0(x) exists in C([0,ul H ),

3
for any 2 > 2

3
(proof) We may take 2 < ml < 3-6 for some 6 > 0. Let f be any

5

(nontrivial) function in H and define f (x) - f2 Let

3-6
B - If(-)I 2 r - -min f x) and P If(,)U * Then If (.)1 - 0 B.

2# x a E 2
L xeR , LH

--3_ -.3. . .
min fe(x) - _ 2 r and If 10)1 0 2 2 + P. By taking

Lx H 1

xeR

sufficiently small, f () is a desired initial function satisfying (2-3) and

(2-4).

To prove Theorem 2.1, we need the following lemma:

Lemma 2.3 Suppose (1-1), (1-2) have solutions u1 (x,t), u2 (x,t), res

tively, in C(10,T), He), s > 3/2, satisfying u i(x,0) = u0 (x) e H
5 ,

i-1,2. Then, it holds that

(2-5) lUI(X't)lL2 - lu0 (X)IL 2' for all t e [O,T),

(2-6) V(x,t)I L2 e ?4u 0 (x)IL 2 for all t e [0,T),

where N is a positive constant depending only on P2"

(proof) Combined with (1-1), (1-2), u(x,t) e c((o,T); H6 ) implies

u(xt) e cI([O,T); H3-1 ). Multiplying both sides of Equations (1-1), (1-2)

by u (x,t), u 2(x,t), respectively, and integrating over R, we obtain

(2-7) d f:, u1
2(x,t)dx - 0,

dt(2-8) f.(I+()I l~ & 0
d . P2 (1) u2([t1 O

since
(2-9) Uixu, dx- 0, fd(u U U x - 0, 1-1,2;

fu2-9i)~

-8-



(2-10) f( 1 u )u dx - f iEP(F)Iu1 (Et)i 
2 d&~ 0.Ii.,llxUX -Io

* 2
(Notice that u1 is a real-valued function and hence, u I(Ct)I is an even

function of E.) (2-5) is implied by (2-7) and, by making use of (2-8) and

(1-6), (2-6) is easily deduced

Now we proceed to:

(proof of Theorem 2.1) with the aid of (1-4) to (1-6) and (2-1), (2-2), we

0
can express P1fx and P3fx (defined in the preceding section) for f e H ,

a > 1, as follows:

(2-11) Pfx Gi(x-y)f(y)dy, i-1,3,

where Gi, i-1,3, satisfy

2 2
(2-12) G e L2 , Glx e L

(2-13) G3 e L2 n CO, G3x e L 2 CO0

0 3

We assume that for given nontrivial ux) in R , s> , there is a global
02

solution u(x,t) of (1-1) in C([0,w)i H8) which, combined with

(1-1), implies u e C (R x [0,-)). Following the classical theory of the

characteristics, we solve the initial value problem for each fixed n e R:

(2-4)dx Ctri)
(2-14) dt - a + u(x~tn),t),

(2-15) x(On) - n.

Observing that u(x,t) is uniformly bounded on R x [0,T], for each T > 0,

I
we can conclude that x(t,n) e C (10,-) x R) and that x(t,i2 ) > x(t,nI ) for

all t > 0, provided n 2 > n I (see Hale f5]). With this x(t,n),

u(x(t,n),t) is regarded as a function of t for each n and satisfies, for

-9-



each fixed n,

d
(2-16) Ft-(x(tn),t) - -_G 1 (x(t,n)-y)u(y,t)dy, for all t o 0,

and

(2-17) u(x(O,n),O) - uO(n).

Since u 0(n) 7 0, there are v > 0 and nI < n2 such that

(2-18) u 0 - u 0(

n2 - nI

Let us set w = u 0(n - u0 (n 2 ) > 0, n12 - nl I > 0. From (2-16), (2-17), it

follows that for all t > 0,

u(x(t,n1 ),t) - u(x(t,12 ),t) -

(2.19)

u0~n1 1 - ut - dT f. {G(X(T,nll-y) - G (X(T,n2 )-y)) u(y,r)dy,

which, together with Lemma 2.3 and (2-12), implies

(2-20) u(x(t,l),t) - u(x(t,n 2 ),t) > (-f0dT MIXIX(T,nI)-X(l,n 2 )I,

for all t > 0, and

(2-21) lu(x(t,n ),t) - u(x(t,n2 ),t)l 4 w + .fdT M1X Ix(T,n )-x(T,n2 l,

for all t > 0, where M1 EGlxIL2 and )n = u 2 " But, (2-14) and

(2-15) yield

T

(2-22) IX(T,n) - X(T,n)l 9- + f d~Iu(x(,n 1 ),4) - u(x(cn2),n)I.

-10-



Consequently, for all 0 4 t 4 1 , we have

ju(x(t,fl1 ),t) - U(x(tfln ),t)I

(2-2 3)
t T

(w+ f dTr M1 Af + f ddju(x(C,In~

by using w 1U

WO ~+ M X f dC(t- )ju(XR,r 1 )) -~(~

r. W4i+-1- ) + M X f -C 2~uXCnUW ' 1 1
+~~V U)2 0I2

By Gronvall's inequality, we arrive at

(2-24) u(x(t,fl)'t) - u(x(t,fl)'t)1 . W e M 1 X/2)e 2

for all 0 4 t 4 and hence,

(2-25) M f1/ ( -0IuxuCn ),'0 - u(X(C,yl ).C)IdC ' M XW(1+-e
1 2 1 212 21

In the mean time, substituting (2-22) into (2-20) we have, for all

1 
2 

1

- 111Af drJ d4ju(x(c,n 1 ),z0 - u(x(4,ri2 ),'0

(2-26)0 
0

=w(l -2 - M1Xf d (t-"iu(x"U,~) ~ 2

)( - Mi--) -M 1AJ d;(- - )lux(,n ,)0 - 2;,

V 2 0 V12

by using (2-25),

-11-
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2 2.
1A 211 Ij

Now we choose K > 0 such that

(2-27) Ml{K + I (+MK)e I K 13

1 1

(2-28) MIKe < a.

Then,

(2-29) A M4 K
2

implies

1
(2-30) u(x(tn))'t) - u(x(trn2 )'t) ) --,'for all 0 4 t 4 1

For the remainder of proof, we assume (2-29) holds. We proceed to estimate

x(ton2) - x(trI). Combining (2-14) to (2-17), it is apparent that

t T
(2-31) x(tn) - n + f dT(a+u 0(n) - f defG I(x(C,n)-y)u(y,)dy) ,

0 0

for all t ) 0, n e R, and thus,

x(tn 2 ) - x(t,'1) =

(2-32)
t T

I-wt-f drf dC { (G1 (x(r.,rl2 )-y) - G (x(l,n1 )-y))u(y,C)dyI}.
0 0

Set f(t) - x~, 2 x(t,2) n)I then, f(t) > 0 for all t ) 0. From (2-32),

we derive the estimate:

t T
f(t) 4 £ - wt + f drIimI f f(l)dc1

0 0

t
(2-33) = - wit + M1 , f (t-C)f(C)dC

0
t

wt + M J (1 - )f(C)dC, for all 0 4 t -
0

-12-



By the qeneralized Gronwall inequality (see Hale (SI),

f ( t ) C £ - W t + N 1f -
K) / 2 P 

2

0
(2-34)

NIX/2P 2 1 3- W - t + N, 1  (-2t - ft + -Vt

1
for all 0 t -.

In particular,

I i' 1X/2u
2

(2-35)ft Me3I

from which we deduce, using (2-28), (2-29),

(2-36) U 2 LI < -3j.X( IA2) - z(.1,n,

Hence, for some Y2 > YI

(2-36) 3 - 3
72 "Yl

Let us sumarize what we have obtained so far: If we suppose thatu(x2,0) -U(,0

u(xt) e c((o,.-), H a) s 3 2 0 1- 0 -u < 0, > and.u~ C- -2 < x 1  an
lu(x.O)1.22 Kc (defined by (2-27), (2-28)), then at time t - --1

2 I

u(Y 2,t) - u(YI 1 t)
2 - -3i', for asre Y2 > y.
Y2  yl

Recalling that lu(x,t)l is constant for all t ) 0, taking - as our

initial time and repeating the above process, we arrive at

(2-38) U U2 U- - -9p.

-13-



for some z 2 > z I . By indefinite iteration, we conclude that as t

approaches + 3 + + 2 x 1 -min u (xet) tends to +-, which
3 2xeRa 3

a3

contradicts our assumption that u(xt) e c([o,-); H ), a > -. This completes

the proof for Equation (1-1). As mentioned in the preceding section,

Equations (1-2) and (1-9) are equivalent provided

au(x,t) e C([0,T); H ), a > 3/2; hence, we consider (1-9) to prove the

assertion for (1-2). By virtue of (2-13), we derive that for all f e L 2(R),

(2-39) lf X{G3lxl-y) - G 3x2-ylf(yldy J 4 Ixl-X2 JG3xIL2 IflL2

and

(2-40) If:.{ G3 (X1-y) - G3(X2-0l f(yl dyl x x m-X2JG 3x1 IfL 2
L L

Using these inequalities and Lemma 2.3, and going through the same procedure

as above, we can arrive at a similar conclusion for Equation (1-9); we omit

the details.

Seliger [10] also considered some model equations of nonlinear wave

motions. However, the method in [10] is not applicable to our problem. The

main reason is that u xx(X,t) may not be defined as an ordinary function

under our assumption. Even if all the assumptions in (10] were met, a result

analogous to Theorem 2.2 cannot be inferred from the result of (10]. Finally,

we recall some known results on the solutions of (0-3) and (0-4). For a given
3

initial function in H5 , s > -, (0-3) and (0-4) have unique local solutions

in C([O,T); Ha ), a > 2; see Kato [6], [7]. It is known that a local

solution of (0-4) in C((0,T)j He) can be extended globally in time provided

a 0 2, while (0-3) does not admit any global solution in
5s  3

C([0,-), He), s > j, unless the initial function is identically zero.

-14-



3. Existence of travelling wave solutions

We shall seek solutions of (1-1), (1-2) in the

form *(x-ct), * constant. For this purpose we consider the following

equations with c * a:

(3-1) - 1 1 12

c 11 2
(3-2) - " 112

Let us suppose that P11 P2 are convolution operators with a kernel in

L(R) and that *'() is a solution of (3-1) (resp. (3-2)) in L(R). Then,

*(x-ct) is a solution (in the distribution sense) of (C-i) (resp.(1-2))

provided uux is interpreted as (1 2). Therefore, we try to find solutions

of (3-1), (3-2) under the following assumptions on P, and P2:

(3-3) P i(), 1-1,2, are even, real-valued functions;

1 2 d 2
(3-4) P,(&) e L U L and dP& ) e L , 1 - 1,2;

(3-5) there exist p > 0 and s * 0, P (0), such that the set

({: P ( ) s) n {2wk/p: k-0,1,2,...) is not empty and

consists of odd number of points;
-1

(3-6) there exist p > 0 and s * pr, 0, P2(0)' such that set

8: n2() = s) n k-0,1,2,...} is not empty and

consists of odd number of points.

Theorem 3.1 Under the assumptions (3-3) to (3-5), there are nonconstant,

periodic solutions to (3-1) for suitable c * a.

Theorem 3.2 Suppose that a * 0 and that (3-3), (3-4) and (3-6) hold. Then,

(3-2) admits nonconstant periodic solutions for suitable c * a.

-15-



(proof of Theorem 3.1) Let us write (3-1) an

(3-7) - l 2

where A is a parameter. By virtue of (3-4), we can define a function F(.)

such that F(C) - P1 (I)i then, F is an even function in L I(R) (see [81).

Consequently, P1 Ii defined by

(3-8) (P1)(x) - f:F(x-y)*(y)dy, for all e Le(R).

Next we define

(3-9) F (x) -I F(x+kp),P k-

with p which appeared in (3-5). Then the series converges absolutely at

almost all x and Fp(x) is a p-periodic, even function. It is easy to see

that F px) is integrable over [0,p) and can be expanded in trigonometric

functions:

,, _ 2wz-.k

(3-10)

~w V-p•I (o)+ 2wk'1-cos'-'-2'p, ,,k
p ~k-1 pp

Next we define the function space

M o

(3-11) 8 " { I ak cos(x ): ak e R, I I aki 2 1+() 2 ) <
k-O k-0

equipped with the norm (~ Jak 2 1j+(wk)2 ) 2  and the corresponding innereqipe wt tenom k-10 lkp

productl then, p is a real Rilbert space. We also define the operator
p

T by

-16-



(3-12) (T #)(x) - p F (,,-y)(y)dy. for each * 6 3
Then we have

Lema 3.3 Tp in a compact, self-adjoint operator in 3p and has an

eigenvalue /21s of odd multiplicity (recall that a and p appeared in

(3-5)).

(proof) L~et *x ea~ 8o(x 6 . Then, from (3-10) and (3-12), it

follows that

(3-13) T*-i2- (k4 o(w
k=0

By the Riemann-Lebesgue Lemma, ;p(-- converges to 0 as k tends to

infinity and we obtain the estimate

k=0 k k-O

which implies that the infinite series of (3-13) converges absolutely for

all x and is equal to (T )(x) for all x. Now it is obvious that T. is

a continuous mapping from S. into itself and that T is self-adjoint in
p p

. For each m ) 1, the operator TpIm  defined by

p p ,m 2 I,
(3-,5, ,T * - ! ,'2" P(t")-. cos(p_ ),

for * akk cosC(Zx) e zp, is a compact operator from 8 into itself.
k-0 p p 2wk

Tp~n I bonde by,' max I1L pJI, w
Since the operator norm IT p mI is bounded v mwp P'M k)m+I

conclude that IT - T I converges to 0 as m tends to infinity. Thus,
p p,m

Tp is also compact. Finally, combining (3-5) and (3-13), we deduce that

w is an eigenvalue of odd multiplicity in OP

-1"7-



#2
Lemma 3.4 The mapping of # + # is a C -mapping from S. into itself.

(proof) First vs observe that the S norm is equivalent to the Hi (0,p)
P ft

norm and that S is a closed subspace of H(o,p). Let I a. cos(2,x e s
m kO p P

and -= o. From the identity cosO cosy = 1 (cos(+y) + cos(O-y)),

vs infer that # e S for each m. In the meantime, it is known that if
in p

f, g e HI (O,p), then fg e H (O,p) and IfglH (p )  i
H (Op) (O~) H(O,p)

2
holds with a constant M > 0 independent of f, g. Therefore *m converges

2 12
to * in H (O,p) as m tends to infinity and we conclude that # e s

p

Now it is easy to see that the mapping # + f is C from Sp into itself.

With the aid of Lemmas 3.3, 3.4, we can easily show that all the

hypotheses in Theorem A of Westreich [11] are satisfied. Hence, it follows
1

that (7-, o) e R x S is a bifurcation point for the equationp

p 2(3-16) - ATp* = X.

In other words, for any given C > 0, there is a nonzero element # in
I

5 and A e R such that JA - - I I <, if I < £ and (AC' '

p
satisfies (3-16). It remains to show that for sufficiently small c > 0, C

cannot be a constant function. In fact, when 0 p, for some constant p,

0 < I0l < £, (3-16) implies

A 1 2
(3-17) p - A C/2w P1 (O)p = 2 A

If C is sufficiently small, 1 - A /2w p1(0) is hounded away from zero by

the condition (3-5) and consequently, (3-17) cannot hold for small p * 0. If

W

*e 8 , then * is a p-periodic, continuous function in L (R) and it
p

holds that
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(3-18) 1P Fp(X-Y)#(Y)dy " .FP(x-y)#(y)dy.
0

Hence, a solution of (3-16) in S. is also a solution of (3-1) by choosing

suitable c $ a. This completes the proof of Theorem 3.1.

(proof of Theorem 3.2) Suppose that a * 0 and write (3-2) as

(3-19) # - XP# (1) 2

where X is a parameter. The above proof of Theorem 3.1 can be repeated to

establish the existence of nonconstant periodic solutions to (3-2). The

1
additional conditions that s - and that a * 0 are necessary to choose

a constant c corresponding to suitable X, that is, c e R can be chosen

so that c- I when X * -1, a * 0.a-c

As an application of the above results, we specialize on (0-1) and (0-2),

which we rewrite as

(3-20) ut + au x -y
x x

at(3-21) ut + au +gu -- m~-yuy d -0O,

where r(x) -A- 1 This interpretation of (0-1) and (0-2) is
3x

admissible since the original model equation was derived in terms of the

symbol of the operator (see [9]). Moreover, this form of the equations has an

advantage in respect that the integral is well-defined when u(-,t) is merely

in L . Restricting our attention to the case c > a, our claim for Equation

(3-20) is:

Theorem 3.4 Suppose that A * 0 and B > 0. Then, (3-20) has nonconstant,

periodic travelling wave solutions of the form *(x-ct), c > a. If A < 0,

-19-



the amplitude of * can be arbitrarily small (with c-a bounded away from

zero). If A > 0 and c - a > C for some c > O, then there is no

nonconstant, periodic solution of the form *(x-ct) with ii 4 F.

(proof) We consider Equation (3-1) with PI ( - -A)w (BIV), where

K (*) is the modified Bessel function of the second kind of order zero. It

is known that E2 0 (RIJ) is nonnegative for all t and that it behaves like
3

2-2 o- ,adlk [ I
E logjU for small C, and like _,E,2 e- for large . Moreover,

max &2 0 (BIE) occurs at a single point, which we denote by 0

1.55/B < C 0 < 1.56/B. Accordingly, the conditions (3-3), (3-4) are satisfied

and we choose

(3-22) sO = 2 K (Bt

and
21k

(3-23) P0 = -- , for any fixed positive integer k0,G0

so that the condition (3-5) is satisfied. In fact, the set

R : PI (E) = s0} n {2: kO0,1,2,... is a single point E0 and hence, the
P0 2

eigenvalue /2 s0 (or -2AE 0K 0(B&0)) is simple with an eigenfunction

cos(g 0x). Here we can use a theorem of Crandall-Rabinowitz [4) to conclude

that (3-1) has solutions

(x) = E cos(& 0X) + eg(c)

with c - a /s s0 + h(E) for sufficiently small E > 0 where g(c) is a

c' function of C into the complement of span {cos(t x)) in S and
0 p0

h(£) is a c function of C into R such that g(0) - 0, h(O) - 0.

When A < 0, so  is positive by (3-22) and thus, the first part of the

theorem has been proved. Next let us consider the case A > 0, which

implies so < 0. Since we are interested in solutions of the form

-20-



(x-ct), c > a, we define a new function T by

(3-24) T - -2(c-a) +

and write (3-1) in terms of Tt

(3-2S) Y - 2 I T2,
a-c I 2 *-c

where we have used the fact that P annihilates constant functions since

p() - -( 2 1). Now we have a - c n place of c - a, whichis

the only difference between (3-1) and (3-25). So we know that (3-25) has

solutions C cos(R 0x) + Cg(C) with a - c = vWws0 + h(C) for sufficiently

small C > 0, where g, h are the sa functions as above. Hence we have

obtained solutions #(x) of (3-1) in the form

#(x) - 2(2A& 0
2

0 (3 0 ) - h(e)) + c cos( 0 x) + eg(e),

with c - a - 2E02 K (B0) - h(c), which is positive when A > 0 and C is

sufficiently small. Finally, we suppose that A > 0, c - a > £ > 0 and thataI
(3-20) has a nonconstant periodic solution #(x-ct) in L with period p.

Then, using (3-18), we find that *(x) satisfies

(3-26) O(x) - c-J (Xy)(y)dy 1 2W +
Ca0 p 2ca

where M is a constant. Let us define

(3-27) O(x) - *(x) - - *(y)dy
p 0

and write (3-26) in terms of o(x):

-21-



PI 1 21 P

(3-28) o(x) - - (x-y)o(y)dy 1 2 2 (x) + I- (f j (y)dy)a(x) + K,
0 p p(c- 0

a. P

where N is a constant and we have used the fact that f F Cx-y)dy - 0
a 0

(notice that P (0) = 0). Multiplying both sides of (3-28) by O(x) and

integrating over (0,p), we obtain

p 2 1 1 1 p p 2 1p 2

(3-29) fP 02(x)dx - + plf0((y)CIi~f-po2(x)dx __121#1 fP02 (x)dx,

0 L P 0  0 c-Q L 0

p p p
since f o(x)dx =0 and f (f F (x-y)fCy)dy)*(x)dx =

0 o op

2 V /wp(2"kJ)(ak 2+b 2) - ,,)2 2pwk)Ofr!)(a 2 b 2) 4 0V pp O a0 + 2 0  , bk j A ( p O B p k +
k=1 k=1

where (x) I a cos-2k x + b sin 2- ). Since * is nonconstant,
k=0 k p

Po2 c-u e:

f 0 (x)dx > 0 and hence, it follows from (3-29) that I4I . > -- >. This

0 L 2 2

concludes the proof of Theorem 3.4.

Remark 3.5 We note that there are infinitely many s, p such that

{4: P1~n)=sl {f -: k=0,1,2,...} is a single point; we could have chosen
p

other points rather than s., p0  in the above proof. Now we elaborate on

this fact. When P (M) = -A (2K0 BI4), PI() is monotonically increasing
1

on M,0 1 and monotonically decreasing on ([ ,) or vice versa depending

on A. Therefore, it is easy to show that the set

Is: 3p > 0, 9: s,p satisfy (3-5)) is dense in the interval (0,s0 ) (or

(so,0)). Suppose A < 0. Let s, be any number in (0,so) and & 1 < &2 be
A

two roots of P(4) = s1 .  If (3-5) is not satisfied by S, we infer that if

t, = 2kI/P for some p > 0 and integer ki > 0, then there is a positive

integer k2  so that 42 = 2wk 2/p. Suppose this is the case. Set

s* = s -6 > 0, for small 6 > 0. Then, E, = 2wk/p, E2 = 2Rk 2/P for

some p > 0 and integers kl, k2 > 0. Let & 1 < 4 2 be roots of
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P - and choose p* so that & I* 2wk 1/p*" obviously,

CI* <  I <  2 < 2*. Thus, p* > p and 2Rk 2/p* < 2wk 2/p = &2 If 6 is

sufficiently small, then p*, E 2* are so close to p, &2' respectively, that

there is no integer k2 * > 0 such that 2 * = 21rk2 */p* > 2wk 2 /P = &2" Hence,

s - 6 may be taken to satisfy (3-5). The proof for the case A > 0 is

similar.

Now we turn our attention to Equation (3-21), for which our assertion is:

Theorem 3.6 Suppose a > 0, A * 0 and B > 0. Then, (3-21) has nontrivial,

periodic travelling wave solutions of the form *(x-ct), c > a. If A < 0,

the amplitude of f can be arbitrarily small (with c-a bounded away from

zero). If A > 0 and c - a > c, then there is no nonconstant, periodic

solution of the form *(x-ct) with t0 . 4 E.
L E / 2 K

(proof) We consider Equation (3-2) with P (E) = A WI), where the
c

bifurcation parameter X is related to c by a- = . Hence, c > a holds

if and only if X < -1. Suppose A < 0. With the aid of Remark 3.5, we can

find EI > 0, P1 > 0 and integer k I > 0 such that &= 2wk1/P1'

-1 < 2AEI2K (BE ) < 0 and such that s I = A/! E12K (BE1
), p1  satisfy the

1 0 1 i

condition (3-6). By repetition of the previous argument, we derive that (3-2)

has solutions

C cos(&lX) + egl(e)

1

with s + hl(C) for sufficiently small C > 0, where g1(C) is a

c" mapping of £ into the complement of {cos(I x)} in S and h (c)

is a c -mapping of £ into R such that g1 (0) = 0, h1 (0) = 0. Now we can

choose c > a such that acc = A < -1. For the case A > 0, we again use

def 2a
Remark 3.5 after introducing T + as in the proof of Theorem 3.4.

The last assertion is also proved as before and we shall omit the details.
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Remark 3.7 It in well known that the K-dy equation admits both solitary wave

solutions and periodic travelling wave solutions. For Equations (3-20),

(3-21), the existence of solitary wave solutions is not known.
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